【題目】如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F分別是線段BC,AC的中點,連結EF.
(1)線段BE與AF的位置關系是 ,
= .
(2)如圖2,當△CEF繞點C順時針旋轉a時(0°<a<180°),連結AF,BE,(1)中的結論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.
(3)如圖3,當△CEF繞點C順時針旋轉a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2
,求旋轉角a的度數.
![]()
【答案】(1)互相垂直;
(2)結論仍然成立(3)135°
【解析】
試題(1)結合已知角度以及利用銳角三角函數關系求出AB的長,進而得出答案;
(2)利用已知得出△BEC∽△AFC,進而得出∠1=∠2,即可得出答案;
(3)過點D作DH⊥BC于H,則DB=4-(6-2
)=2
-2,進而得出BH=
-1,DH=3-
,求出CH=BH,得出∠DCA=45°,進而得出答案.
試題解析:(1)如圖1,線段BE與AF的位置關系是互相垂直;
∵∠ACB=90°,BC=2,∠A=30°,
∴AC=2
,
∵點E,F分別是線段BC,AC的中點,
∴
=![]()
(2))如圖2,∵點E,F分別是線段BC,AC的中點,
![]()
∴EC=
BC,FC=
AC,
∴
,
∵∠BCE=∠ACF=α,
∴△BEC∽△AFC,
∴
,
∴∠1=∠2,
延長BE交AC于點O,交AF于點M
∵∠BOC=∠AOM,∠1=∠2
∴∠BCO=∠AMO=90°
∴BE⊥AF;
(3)如圖3,
![]()
∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°
過點D作DH⊥BC于H∴DB=4-(6-2
)=2
-2,
∴BH=
-1,DH=3-
,又∵CH=2-(
-1)=3-
,
∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=24厘米,BC=16厘米,點D為AB的中點,點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.當點Q的運動速度為_______厘米/秒時,能夠在某一時刻使△BPD與△CQP全等.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】通過學習三角函數,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.類似地,可以在等腰三角形中建立邊角之間的關系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad)如圖1,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad
.容易知道一個角的大小與這個角的正對值也是相互唯一確定的。根據上述角的正對定義,解答下列問題:
(1)sad
= ;
(2)對于
<A<
,∠A的正對值sadA的取值范圍 ;
(3如圖2,已知sinA=
,其中∠A為銳角,試求sadA的值。
![]()
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,已知△ABC為等邊三角形,D、E分別為BC、AC邊上的兩動點(與點A、B、C不重合),且總使CD = AE,AD與BE相交于點F.
(1)求證:AD = BE;
(2)求∠BFD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.
(1)求證:EF是⊙O的切線;
(2)求證:
=4BPQP.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙D的直徑,AD切⊙D于點A,EC=CB.則下列結論:①BA⊥DA;②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正確的個數有( )
![]()
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:將矩形
繞點
逆時針旋轉
得到矩形
.
(1)如圖
,當點
在
上時,求證:![]()
(2)當旋轉角
的度數為多少時,
?
(3)若
,請直接寫出在旋轉過程中
的面積的最大值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,以AB為直徑的⊙O交BC于點D,交AC于點E,連結DE,過點B作BP平行于DE,交⊙O于點P,連結EP、CP、OP.
(1)BD=DC嗎?說明理由;
(2)求∠BOP的度數;
(3)求證:CP是⊙O的切線.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),則點A1,C1的坐標分別是 ( 。
![]()
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)
C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com